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Abstract
We have formulated a new functional-integral representation with respect to
both polymer and monomer densities, along the lines of the current picture
treating polymers as soft colloids. Comparison between the resulting form
and a model free energy functional of Pagonabarraga and Cates (PC 2001
Europhys. Lett. 55 348) indicates that the PC relation between monomer
and polymer concentrations is to be modified, and that further insertion of
the order parameter defined by the square of monomer density is indispensable
for regularizing a divergent term absent in the PC functional. Moreover, the
saddle-point approximation to our functional integral leads to a self-consistent
equation which efficiently preincludes the minimum of the Flory–Huggins-type
local free energy as input.

1. Introduction

Since the seminal work of Edwards [1], functional-integral formulations have played a central
role in developing mesoscopic theories of polymer melts and solutions [2–4]. The field-
theoretic approaches have usually started with taking the collective variables of both monomer
density ρ(r) and its conjugate potential field ϕ(r). Correspondingly, previous coarse-grained
theories are classified into two types, potential and density forms, eliminating the other field
in some ways [3, 5].

The former is readily available, since we have no difficulty in Gaussian-integrating out the
ρ-variable with the potential ϕ retained [2]. The saddle point approximation to the potential
form, known as self-consistent field (SCF) theory,has been remarkably successful in explaining
a variety of mesostructures experimentally observed in block copolymers and polymer alloys
[2, 6]. More recently, the SCF equation has been devised for discovering novel ordered
phases [2, 7] and for considering fluctuations [2, 8].

In formulating the latter density forms, on the other hand, approximations have been
involved. First, eliminating the ϕ-field itself requires the steepest descent approximation of

0953-8984/05/250241+09$30.00 © 2005 IOP Publishing Ltd Printed in the UK L241

http://dx.doi.org/10.1088/0953-8984/17/25/L01
mailto:frusawa.hiroshi@kochi-tech.ac.jp
http://stacks.iop.org/JPhysCM/17/L241


L242 Letter to the Editor

the ϕ-integral at a given density. Moreover, the solution of the saddle point equation with ρ
fixed has been expressed in perturbative forms; otherwise the full mean field theory (or the
non-perturbative saddle point approximation both to ϕ and ρ fields) is formally identical to
the above SCF theory [3, 5]1.

To derive the approximate density functional, much use has been made of the cumulant
expansion [4, 9]. The resulting forms are hence represented by the vertex functions, similarly
to the effective action in the standard field theory [10]. The perturbative but illuminating
functionals have offered superiority both in exploring new mesostructures [11] and in taking
systematic account of composition fluctuations [12].

An alternative expansion has also been proposed by Tang and Freed [13], and has since
been applied to liquid crystals [14] as well as semiflexible polymers [15]. The method takes
the gradient expansion of the potential field about the centre of mass (c.m.) of polymer chains,
which yields [13] the Lifshitz–de Gennes (LdG) functional [17],

FLdG{ρ} = U{ρ} − k−1
B S{ρ/N} +

αb2

4

|∇ρ(r)|2
ρ(r)

= FFH{ρ} +
αb2

4

|∇ρ(r)|2
ρ(r)

, (1)

without collecting power series in the density deviation from the smeared value ρ like
the cumulant expansion method [16]. In equation (1), the symbols denote the following:
the constant N is the polymerization degree, the functionals of interaction energy U and
entropic contribution −k−1

B S in the unit of thermal energy kBT are given respectively as
U{m} = (v/2)m · m + m · J and −k−1

B S{m} = ∫
dr m(r) ln m(r) − m(r) (where we have

introduced the notation f · g = ∫
dr f (r) g(r), excluded volume v and an external field J ),

the constant α is equal to 1/6 (Lifshitz) or 1/9 (de Gennes) [17], b is the monomer length of
polymers and FFH = U − k−1

B S corresponds to the Flory–Huggins-type functional.
When we setψ2 = ρ, ignore the logarithmic entropy term, and add the chemical potential

µ of the polymer, the stationary condition δFLdG/δρ = µ/N of the above LdG functional (1)
leads to [18]

αb2∇2ψ(r) = [vψ2(r)− µ/N + J (r)]ψ(r). (2)

Equation (2) agrees with the SCF equation in the ground state dominance approximation and
has been useful particularly in studying adsorptions of long polymers or polyelectrolytes [18];
in the last case, J in equation (2) denotes the electrostatic potential produced by ions. Worthy
of special mention in recent years is the successful extension of the LdG approach, or the set
of equations (1) and (2), to block copolymers [19].

Among the various density forms, this letter will focus on a model functionalFPC proposed
by Pagonabarraga and Cates (PC) [20]. The PC functional reflects the enlightening picture that
polymers can be described mesoscopically by soft interpenetrating spheres [21], and thereby
replaces all of entropic contributions by only the translational entropy of polymers as soft
colloids [20]:

FPC{ρ, c} = U{ρ} − k−1
B S{c} cq = (Ns0(q))

−1/2 ρq (3)

where c(r) is a polymer density and the Fourier-transformed quantity cq is postulated to have
the above relation with the monomer density ρq via the structure factor s0(q) of Gaussian
chains. While too much simplicity of the PC form (3) contrasts with the density functional
theory in a narrow sense [22] (the so-called DFT in liquid state physics [23]), the PC
functional is noticeably reduced to the LdG form (1) in the small-wavevector approximation
c(r) ≈ (1/N − b2∇2/36) ρ(r), namely FPC ≈ U{ρ} − k−1

B S{ρ/N − b2∇2ρ/36} = FLdG{ρ},
and hence is of practical use.

1 However, the computational advantage of the density form has been suggested in [5].
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2. Strategy

Motivated by the PC proposal [20], we will add a new variable, polymer density c(r), into
the conventional functional integral of monomer concentration ρ(r) (see equation (19) below)
and will evaluate the functional integrals of potential fields conjugate to both polymer and
monomer densities. A noteworthy step is the non-perturbative saddle-point approximation of
the potential field h(r) coupled to the present polymer concentration c(r) (see (D3) below);
for the prescription yields the logarithmic entropy term, −k−1

B S{c}, as well as the density
functional-integral form of simple fluids [24].

3. Results

Before presenting more details of the formulations, we would like to state the benefits which
the above redoubling of density variables brings as follows. (R1) With the help of the polymer
concentration, a modified PC functional is verified conditionally. (R2) Minimal account of
chain connectivity, also taken in the first result, reproduces the Flory–Krigbaum potential [25]
for the effective interaction between polymers. (R3) Our formalism provides an efficient SCF
equation suitable for exploring new assemblies.

(R1) Functional integral forms. From the evaluations which will be detailed in (D3) and
(D4), we get the grand partition function � expressed by functional integrals with respect to
the monomer and polymer densities, ρ and c:

� =
∫

Dρ Dc
∏

{r}
δ[ρ(r)−�c(r)] exp

[

−FPC{ρ, c} + A{c} + µ
∫

dr c(r)
]

. (4)

The above Dirac delta functional implies that c and ρ are related to each other through the
operator� similarly to the PC relation (3). The Fourier transform�q , however, is not identical
to equation (3) but is proportional to the form factor, ωc.m., between c.m. and monomer [26]:

�q = Nωc.m.(x) = N
√
π

x
e−x2/12 erf

(
x

2

)

≈ Ne−x2 /6 x = q Rg, (5)

where Rg is the unperturbed radius of gyration of a chain given by R2
g = Nb2/6 and erf denotes

the error function. In spite of the different c–ρ relation from that of the PC, it follows similarly
that

FPC{ρ, c = �−1ρ} ≈ FPC
{
ρ, c = (1/N − b2∇2/36)ρ

} = FLdG{ρ} (6)

in the small-wavevector expansion,�−1
q ≈ 1/N + b2q2/36(≈N−1 e q2 R2

g/6).
The PC proposal thus far receives only a modification of the operator�. More crucially,

equation (4) has the exponent A{c} given by

exp(A{c}) =
∏

{r}

√
2π

c(r)
= lim

ε→0
exp

(
1

2ε

∫
dr ln

2π

c(r)

)

. (7)

The last representation manifests the divergent behaviour to be regularized somehow, and the
presence of this density functional term is what we have meant by the above ‘conditional
verification’.

To suppress the anomaly (7), it is relevant to add the polymer order parameter ψ(r) via
the relation ψ2 = ρ. As shown in (D5), the ψ-integral transforms equation (4) to

� =
∫

Dρ Dc Dψ det�1/2
∏

{r}
δ(ψ2 − ρ)δ(ρ −�c) exp

[

−FPC + µ
∫

dr c(r)
]

, (8)
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where the divergent term A{c} disappears but the determinant of the operator �1/2 emerges
instead. The functional-integral form (8) is the main result of this letter.

(R2) Effective interaction. One of the central issues in regarding polymers as soft colloids
is to evaluate the effective interaction Veff between polymers, and much progress in this
direction has been made [25, 27]. We then would like to see the correspondence between
previous results and ours, expressing the interaction energy functional U{ρ} by polymer
density c:

U{ρq ≈ N cq e−q2 R2
g/6} = N2v

2

∑

q

c2
q exp

(

−q2 R2
g

3

)

= N2v

2

∫
dr dr′

(
3

4πR2
g

)3/2

exp

(

−3(r − r′)2

4R2
g

)

c(r)c(r′). (9)

From this, one finds that Veff(r) = N2v(3/4πR2
g)

3/2 exp(−3r2/4R2
g) in agreement with the

Gaussian effective interaction proposed by Flory and Krigbaum [25]. In other words, our first
approximation of chain correlations reproduces the primitive result correctly.

(R3) A new SCF equation. Lastly, we wish to point out that not only does the PC functional
FPC encompass the LdG one FLdG as described in equation (6), but also our functional integral
(8) goes beyond the LdG approach where equation (2) has been derived from equation (1)
somewhat heuristically [18, 19].

It is readily found that the saddle point approximation to the ψ-integral in equation (8)
verifies the SCF equation (2) and forms the basis of the LdG approach as follows: let us
again set ρ = ψ2 and neglect the logarithmic entropy term to get FPC{ρ = ψ2, c =
�−1ψ2} ≈ U{ψ2} + (b2/9)

∫
dr |∇ψ(r)|2. Using the expression for FPC{ψ}, the saddle-

point approximation of the ψ-integral, δFPC/δψ = 2µψ , reads as the present equation (2).
The above derivation,however, makes no use of the multivariable form of equation (8). We

then demonstrate below that combination ofψ- and ρ-integrals provides a new SCF equation,
starting with the transform of the functional integral (8):

� =
∫

Dρ Dψ Dκ det�−1/2

× exp

[

−FFH{ρ} − b2

9

∫
dr |∇ψ|2 + iκ · (ψ2 − ρ) + µ

∫
dr
ρ

N

]

. (10)

Here the c-field in equation (8) has been integrated out as
∫

Dc det�1/2
∏

{r}
δ(ρ −�c) = det�1/2 det�−1 = det�−1/2, (11)

due to both the relation δ(ρ−�c)= δ(�c−ρ) and the representationFPC{ρ, c}+µ
∫

dr c(r) ≈
FFH{ρ} + (b2/9)

∫
dr |∇ψ|2 + µ

∫
dr ρ(r)/N , and the delta functional in equation (8),∏

{r} δ[ψ
2(r)− ρ(r)], has been exponentiated:

∏
{r} δ[ψ

2(r)− ρ(r)] = ∫
D κ exp

(
iψ2 · κ −

iρ · κ).
To evaluate the ρ-integral in equation (10), we select a trial density ρt satisfying the

stability condition, δFFH/δρ|ρ=ρt = µ/N , for the local free energy of Flory–Huggins type,
and expand the exponent of equation (10) around the trial density ρt to get

FFH{ρ} + iκ · ρ ≈ FFH{ρt } + iκ · ρt + i κ ·�ρ + 1
2

∫
drF (2)

FH {ρt}�ρ(r)2
ρt (r)/N = eµ exp[−Nv ρt (r)− N J (r)],

(12)

where �ρ = ρ − ρt and F (2)
FH denotes the second functional derivative, F (2)

FH {ρt } ≡
δ2FFH/δρ

2|{ρt } = v + [Nρt (r)]−1. It is now possible to carry out the Gaussian integration
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over both�ρ- and κ-fields in equation (10), amounting to

� = e−FFH{ρt }+µ
∫

dr ρt/N det�−1/2

×
∫

Dψ exp

[

−
∫

dr
b2

9
|∇ψ|2 −

∫
dr

1

2
F (2)

FH {ρt }(ψ2 − ρt )
2

]

. (13)

The saddle-point condition for the ψ-integral leads to

b2

9
∇2ψ(r) = F (2)

FH {ρt}[ψ2(r)− ρt (r)]ψ(r), (14)

which is our SCF equation. Good correspondence between equations (14) and (2) is seen
for v �= 0 and J = 0. In this case, the previous equation (2) is reduced to (b2/9)∇2ψ =
v(ψ2 − ρ)ψ due to µ = Nvρ with the neglect of the logarithmic entropy term, and then
agrees with equation (14) in the approximation F (2)

FH ≈ v and ρt (r) ≈ ρ.
Comparison between equations (2) and (14) reveals at the same time the predominance

of our SCF equation (14). To see this, let us drop the Laplacian terms on the left sides of
equations (2) and (14) without considering conformational entropy. The local equations give,
respectively, the previous solution ψ2

0 = ρ in the above case (v �= 0 and J = 0) and ψ2
0 = ρt

in ours, implying that the new SCF equation (14) preincludes the minimum of the Flory–
Huggins-type free energy through the input density ρt (r), in contrast to conventional SCF
theories, which search the solutions of inhomogeneous density distribution in the full range,
relying solely on the self-consistency.

The above feature of equation (14) should be efficient for discovering new assemblies
of polymers, because the detailed modulation of monomer density is not investigated before
finding the extent of polymer segregation,or the trial densityρt(r), due to attractive interactions
and/or external fields.

4. Details

Let us now turn our attention to mathematical manipulations. The following descriptions
consist of five steps which are further grouped into three parts. In the first part, we set up
the problem by (D1) writing down the configurational integral representations and by (D2)
introducing functional integrals of both monomer and polymer concentrations, ρ and c. Next,
we will (D3) perform the Gaussian approximation for the integral with respect to the conjugate
field of polymer density and will (D4) take a first approximation of intramolecular correlation;
consequently, while the former step (D3) provides the exponent of equation (4), the latter (D4)
provides the delta functional of equation (4). In the final part (D5), we show that an anomalous
density functional given by (7) is suppressed by adding the polymer order parameter ψ .

(D1) Configurational integral representation. Let us consider a solution of M polymer
chains with its volume V . We represent polymers by continuous space curves Ri , where
i = 1, . . . ,M indexes the different polymers and s is a contour length variable running from
zero to unity. The grand partition function � is expressed by path integrals with the Wiener
measure D̃Ri (s) [1]:

� =
∞∑

M=0

eµM

M!

∫ M∏

i=1

D̃Ri(s) exp(−U{ρ̂})

D̃Ri (s) ≡ DRi (s) exp

(

− 1

4R2
g

∫ 1

0
ds

∣
∣
∣
∣
dRi(s)

ds

∣
∣
∣
∣

2)

,

(15)

where the interaction energy U{ρ̂} = (v/2)ρ̂ · ρ̂ + ρ̂ · J is the functional of microscopic
representation for monomer density, ρ̂(r) = N

∑M
i=1

∫ 1
0 ds δ[r − Ri(s)].
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(D2) Introducing two density fields. As usual, we first constrain the monomer density
field ρ(r) to the microscopic one ρ̂(r) by the identity

1 =
∫

Dρ
∏

{r}
δ[ρ(r)− ρ̂(r)] =

∫
Dρ Dϕ exp[i(ρ − ρ̂) · ϕ]. (16)

Moreover, we wish to introduce a polymer density field c(r) as another integration variable
through a microscopic concentration,

ĉ(r) =
M∑

i=1

δ[r − Ri
c.m.] δ

[

Ri
c.m. −

∫ 1

0
ds Ri (s)

]

, (17)

where Ri
c.m. denotes the position of the centre of mass (c.m.) of the i th polymer, therefore ĉ(r)

corresponds to the number density of the c.m. of polymers. As before we equate the polymer
density field c(r) with the microscopic quantity ĉ(r):

1 =
∫

Dc
∏

{r}
δ[c(r)− ĉ(r)] =

∫
Dc Dh exp

[
i(c − ĉ) · h

]
. (18)

Inserting the two identities (16) and (18) into the partition function (15), we have

� =
∫

Dρ Dϕ Dc Dh exp(−U{ρ} + iρ · ϕ + ic · h + eµQ {h, ϕ})

Q{h, ϕ} =
∫

D̃R(s) exp

(

−ih(Rc.m.)− iN
∫ 1

0
ds ϕ[R(s)]

)

,

(19)

which are the starting forms of functional integrals. To be noted in the second line of the
above equations, the position vector Rc.m. of the h-field is dependent on configurations of the
continuous curve, {R(s)}, via the relation Rc.m. =

∫ 1
0 ds R(s).

(D3) Gaussian approximation to the conjugate fieldh. We would like to integrate out the
h-field in equation (19) exploiting the saddle-point equation, ic(r) + eµ(δQ/δh)

∣
∣{h∗} = 0, or

c(r) = exp[µ− ih∗(r)]Z intra(r) (20)

Z intra(r; {ϕ}) =
∫

D̃R(s) δ[r − Rc.m.] exp

[

−iN
∫ 1

0
ds ϕ{R(s)}

]

. (21)

Here we use the subscript ‘intra’ since Z intra(r; {ϕ}) corresponds to the intra-chain partition
function performing the path-integral over all the chain configurations with the position of the
c.m., Rc.m., fixed at r. Considering only quadratic fluctuations around the saddle point field
{h∗(r)}, we obtain
∫

Dh exp[ic · h + eµQ {h, ϕ}]

=
∫

D(�h) exp

[

ic · h∗ + eµQ {h∗, ϕ} +
∫

dr
eµQ(2){h∗, ϕ}

2
�h(r)2

]

= exp

(

k−1
B S{c} +

∫
dr c(r) ln[Z intra(r; {ϕ})] + A{c} + µ

∫
dr c(r)

)

, (22)

where the anomalous term A{c} is due to the Gaussian integration over the fluctuating field
{�h}. Since the second derivative of Q {h, ϕ} with respect to h, denoted by Q(2), satisfies
eµQ(2) {h∗, ϕ} = −c(r) at the saddle-point path h∗, we get the anomaly A{c} of equation (7).
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(D4) Minimal consideration of intramolecular correlation. Let us go on to take minimal
account of the connectivity of polymers, by expanding Z intra(r; {ϕ}) only to the lowest order
in ϕ:

Z intra(r; {ϕ}) ≈ Z intra(r; ϕ ≡ 0)− iN
∫

dr′ G(r − r′) ϕ(r′)

G(r − r′) =
∫ 1

0
ds

∫
D̃R δ[r − Rc.m.] δ[r′ − R(s)],

(23)

where the intra-chain partition function Z intra(r; ϕ ≡ 0) in the absence of external fieldϕ = 0 is
nothing but the partition function of a Gaussian chain and is equal to unity, Z intra(r; ϕ ≡ 0) = 1,
by definition of the Wiener measure D̃R [1] because it is possible to explore the full space of
the tangent vector dR (s)/ds in equation (15) without moving the centre of mass as mentioned
before.

Therefore, in the approximation (23), the logarithm of Z intra appearing in the exponent of
the last line in equation (22) reads

ln[Z intra(r; {ϕ})] ≈ −iN
∫

dr′ G(r − r′) ϕ(r′), (24)

and the ϕ-integral yields
∫

Dϕ eiρ·ϕ+c·ln Z intra =
∫

Dϕ exp

[∫
dr iϕ(r)

{

ρ(r)− N
∫

dr′ G(r − r′) c(r)
}]

=
∏

{r}
δ[ρ(r)−� c(r)], (25)

noting that the kernel G(r −r′) given in equation (23) is expressed by the c.m.–monomer form
factor ωc.m. (see also the definition (5)):

N
∫

dr′ G(r − r′) c(r′) = N
∫

dr′ωc.m.(Rg∇) δ(r − r′) c(r′) = � c(r). (26)

Combining equations (19), (22) and (25), namely the h- and ϕ-integrations of equation (19),
amounts to the results (4) and (5).

(D5) Why is the polymer order parameter ψ to be added? Because the third time insertion
of the identity

1 =
∫

Dψ det

{
δψ2

δψ

}∏

{r}
δ[ψ2(r)−� c(r)] = det(4�c)1/2

∫
Dψ

∏

{r}
δ(ψ2 −� c), (27)

suppresses the anomaly given by equation (7) as follows:

eA{c} = lim
ε→0

exp

[
1

2ε

∫
dr ln

(
2π

c

)

+ ln (4� c)

] ∫
Dψ

∏

{r}
δ(ψ2 −� c)

= det (8π�)1/2
∫

Dψ
∏

{r}
δ(ψ2 −� c). (28)

Equation (4) with (28) leads to the regularized form (8), absorbing the constant det(8π)1/2 into
an integral measure formally.

5. Concluding remarks

The PC functional, FPC, given by equation (3), has thus shed light on how to develop a
functional-integral formulation of soft polymeric colloids. The key procedures are twofold.
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The first, the set of equations (17) and (18), is to introduce a polymer concentration c in addition
to the monomer density ρ. The second, equation (23), is to truncate at O(ϕ) the expansion of
the intra-chain partition function, Z intra, given by (21). Consequently, as described in (R1),
we have obtained equation (4), whose exponent is similar to the PC functional [20]. The
differences from the PC are that the c–ρ relation is represented not by the structure factor of
Gaussian chains but by the form factor ωc.m. given in (5), and that the anomalous term (7) is
added. Furthermore, as shown in (R2) and (R3), the new functional-integral representation, (4)
or (8), not only has reproduced the classical Flory–Krigbaum effective potential (9) between
polymers, but also has provided an efficient SCF equation (14) which preincludes the stability
condition of the Flory–Huggins functional through the trial density (12).

Finally, we should note that the present functional-integral representation is extended
straightforwardly to validate the formulations of block copolymers [19], and also has the
advantage of systematic improvements on the following approximations: the saddle-point
approximation in deriving equation (14), and the minimal consideration (23) of intramolecular
correlation in evaluating the intra-chain partition function Z intra. Beyond the former mean-
field theory, density fluctuations can be readily taken into account along the conventional
lines [12]. The latter extension, on the other hand, not only relaxes the strict constraint on
the c–ρ relation but also produces the coupling between the monomer–monomer and c.m.–
monomer correlations, suggesting the relevance of our field-theoretic approach to current
issues in describing polymers as soft colloids: effective interaction between polymers [25, 27],
the relationship between the measurable monomer–monomer structure factor and the c.m.
structure factor [28] and so on.

The author is grateful to T Ohta, M Doi, J Fukuda and T Uneyama for useful discussions and
encouragement. This work was partially supported by the Ministry of Education, Science,
Culture and Sports of Japan (Grant-in-Aid for Scientific Research No 16740245).
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Likos C N, Hoffmann N, Löwen H and Louis A A 2002 J. Phys.: Condens. Matter 14 7681
Yatsenko G, Sambriski E J and Guenza M G 2005 J. Chem. Phys. 122 054907

[22] See, e.g. Yethiraj A 1998 J. Chem. Phys. 109 3269
Tripathi S and Chapman W G 2005 Phys. Rev. Lett. 94 087801

[23] Evans R 1979 Adv. Phys. 28 143
[24] Frusawa H and Hayakawa R 1999 Phys. Rev. E 60 R5048

Woo H-J and Song X 2001 J. Chem. Phys. 114 5637
[25] Likos C N 2001 Phys. Rep. 348 267
[26] Koyama R 1981 Macromolecules 14 1299

Yamakawa H 1971 Modern Theory of Polymer Solutions (New York: Harper and Row)
[27] Yatsenko G, Sambriski E J, Nemirovskaya M A and Guenza M 2004 Phys. Rev. Lett. 93 257803

Krakoviack V, Rotenberg B and Hansen J-P 2004 J. Phys. Chem. B 108 6697
[28] Krakoviack V, Hansen J-P and Louis A A 2002 Europhys. Lett. 58 53


	1. Introduction
	2. Strategy
	3. Results
	4. Details
	5. Concluding remarks
	References

